Copied to
clipboard

G = C28.3C42order 448 = 26·7

3rd non-split extension by C28 of C42 acting via C42/C22=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C28.3C42, C23.33D28, M4(2)⋊3Dic7, C14.12C4≀C2, C4⋊Dic711C4, (C4×Dic7)⋊6C4, C28.10(C4⋊C4), (C2×C28).10Q8, C4.3(C4×Dic7), C73(C426C4), (C2×C28).492D4, (C7×M4(2))⋊6C4, (C2×C4).25Dic14, (C22×C14).46D4, (C2×M4(2)).6D7, C2.3(D284C4), C28.94(C22⋊C4), C4.10(Dic7⋊C4), (C22×C4).325D14, C22.3(C4⋊Dic7), C4.27(C23.D7), C22.42(D14⋊C4), (C14×M4(2)).10C2, (C22×C28).124C22, C23.21D14.8C2, C14.14(C2.C42), C2.14(C14.C42), (C2×C4).69(C4×D7), (C2×C4×Dic7).2C2, (C2×C14).7(C4⋊C4), (C2×C28).62(C2×C4), (C2×C4).39(C2×Dic7), (C2×C4).179(C7⋊D4), (C2×C14).54(C22⋊C4), SmallGroup(448,112)

Series: Derived Chief Lower central Upper central

C1C28 — C28.3C42
C1C7C14C2×C14C2×C28C22×C28C23.21D14 — C28.3C42
C7C14C28 — C28.3C42
C1C2×C4C22×C4C2×M4(2)

Generators and relations for C28.3C42
 G = < a,b,c | a28=b4=1, c4=a14, bab-1=a-1, cac-1=a15, cbc-1=a21b >

Subgroups: 452 in 110 conjugacy classes, 51 normal (39 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, C23, C14, C14, C14, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), M4(2), C22×C4, C22×C4, Dic7, C28, C2×C14, C2×C14, C2×C42, C42⋊C2, C2×M4(2), C56, C2×Dic7, C2×C28, C22×C14, C426C4, C4×Dic7, C4×Dic7, C4⋊Dic7, C23.D7, C2×C56, C7×M4(2), C7×M4(2), C22×Dic7, C22×C28, C2×C4×Dic7, C23.21D14, C14×M4(2), C28.3C42
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, D7, C42, C22⋊C4, C4⋊C4, Dic7, D14, C2.C42, C4≀C2, Dic14, C4×D7, D28, C2×Dic7, C7⋊D4, C426C4, C4×Dic7, Dic7⋊C4, C4⋊Dic7, D14⋊C4, C23.D7, D284C4, C14.C42, C28.3C42

Smallest permutation representation of C28.3C42
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 81 29 94)(2 80 30 93)(3 79 31 92)(4 78 32 91)(5 77 33 90)(6 76 34 89)(7 75 35 88)(8 74 36 87)(9 73 37 86)(10 72 38 85)(11 71 39 112)(12 70 40 111)(13 69 41 110)(14 68 42 109)(15 67 43 108)(16 66 44 107)(17 65 45 106)(18 64 46 105)(19 63 47 104)(20 62 48 103)(21 61 49 102)(22 60 50 101)(23 59 51 100)(24 58 52 99)(25 57 53 98)(26 84 54 97)(27 83 55 96)(28 82 56 95)
(1 94 36 74 15 108 50 60)(2 109 37 61 16 95 51 75)(3 96 38 76 17 110 52 62)(4 111 39 63 18 97 53 77)(5 98 40 78 19 112 54 64)(6 85 41 65 20 99 55 79)(7 100 42 80 21 86 56 66)(8 87 43 67 22 101 29 81)(9 102 44 82 23 88 30 68)(10 89 45 69 24 103 31 83)(11 104 46 84 25 90 32 70)(12 91 47 71 26 105 33 57)(13 106 48 58 27 92 34 72)(14 93 49 73 28 107 35 59)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,81,29,94)(2,80,30,93)(3,79,31,92)(4,78,32,91)(5,77,33,90)(6,76,34,89)(7,75,35,88)(8,74,36,87)(9,73,37,86)(10,72,38,85)(11,71,39,112)(12,70,40,111)(13,69,41,110)(14,68,42,109)(15,67,43,108)(16,66,44,107)(17,65,45,106)(18,64,46,105)(19,63,47,104)(20,62,48,103)(21,61,49,102)(22,60,50,101)(23,59,51,100)(24,58,52,99)(25,57,53,98)(26,84,54,97)(27,83,55,96)(28,82,56,95), (1,94,36,74,15,108,50,60)(2,109,37,61,16,95,51,75)(3,96,38,76,17,110,52,62)(4,111,39,63,18,97,53,77)(5,98,40,78,19,112,54,64)(6,85,41,65,20,99,55,79)(7,100,42,80,21,86,56,66)(8,87,43,67,22,101,29,81)(9,102,44,82,23,88,30,68)(10,89,45,69,24,103,31,83)(11,104,46,84,25,90,32,70)(12,91,47,71,26,105,33,57)(13,106,48,58,27,92,34,72)(14,93,49,73,28,107,35,59)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,81,29,94)(2,80,30,93)(3,79,31,92)(4,78,32,91)(5,77,33,90)(6,76,34,89)(7,75,35,88)(8,74,36,87)(9,73,37,86)(10,72,38,85)(11,71,39,112)(12,70,40,111)(13,69,41,110)(14,68,42,109)(15,67,43,108)(16,66,44,107)(17,65,45,106)(18,64,46,105)(19,63,47,104)(20,62,48,103)(21,61,49,102)(22,60,50,101)(23,59,51,100)(24,58,52,99)(25,57,53,98)(26,84,54,97)(27,83,55,96)(28,82,56,95), (1,94,36,74,15,108,50,60)(2,109,37,61,16,95,51,75)(3,96,38,76,17,110,52,62)(4,111,39,63,18,97,53,77)(5,98,40,78,19,112,54,64)(6,85,41,65,20,99,55,79)(7,100,42,80,21,86,56,66)(8,87,43,67,22,101,29,81)(9,102,44,82,23,88,30,68)(10,89,45,69,24,103,31,83)(11,104,46,84,25,90,32,70)(12,91,47,71,26,105,33,57)(13,106,48,58,27,92,34,72)(14,93,49,73,28,107,35,59) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,81,29,94),(2,80,30,93),(3,79,31,92),(4,78,32,91),(5,77,33,90),(6,76,34,89),(7,75,35,88),(8,74,36,87),(9,73,37,86),(10,72,38,85),(11,71,39,112),(12,70,40,111),(13,69,41,110),(14,68,42,109),(15,67,43,108),(16,66,44,107),(17,65,45,106),(18,64,46,105),(19,63,47,104),(20,62,48,103),(21,61,49,102),(22,60,50,101),(23,59,51,100),(24,58,52,99),(25,57,53,98),(26,84,54,97),(27,83,55,96),(28,82,56,95)], [(1,94,36,74,15,108,50,60),(2,109,37,61,16,95,51,75),(3,96,38,76,17,110,52,62),(4,111,39,63,18,97,53,77),(5,98,40,78,19,112,54,64),(6,85,41,65,20,99,55,79),(7,100,42,80,21,86,56,66),(8,87,43,67,22,101,29,81),(9,102,44,82,23,88,30,68),(10,89,45,69,24,103,31,83),(11,104,46,84,25,90,32,70),(12,91,47,71,26,105,33,57),(13,106,48,58,27,92,34,72),(14,93,49,73,28,107,35,59)]])

88 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G···4N4O4P4Q4R7A7B7C8A8B8C8D14A···14I14J···14O28A···28L28M···28R56A···56X
order1222224444444···44444777888814···1414···1428···2828···2856···56
size11112211112214···142828282822244442···24···42···24···44···4

88 irreducible representations

dim1111111222222222224
type+++++-++-+-+
imageC1C2C2C2C4C4C4D4Q8D4D7Dic7D14C4≀C2Dic14C4×D7C7⋊D4D28D284C4
kernelC28.3C42C2×C4×Dic7C23.21D14C14×M4(2)C4×Dic7C4⋊Dic7C7×M4(2)C2×C28C2×C28C22×C14C2×M4(2)M4(2)C22×C4C14C2×C4C2×C4C2×C4C23C2
# reps1111444211363861212612

Matrix representation of C28.3C42 in GL5(𝔽113)

10000
098000
0181500
00011279
0003425
,
980000
0988800
001500
0001120
000341
,
10000
01123600
0100100
0001120
0000112

G:=sub<GL(5,GF(113))| [1,0,0,0,0,0,98,18,0,0,0,0,15,0,0,0,0,0,112,34,0,0,0,79,25],[98,0,0,0,0,0,98,0,0,0,0,88,15,0,0,0,0,0,112,34,0,0,0,0,1],[1,0,0,0,0,0,112,100,0,0,0,36,1,0,0,0,0,0,112,0,0,0,0,0,112] >;

C28.3C42 in GAP, Magma, Sage, TeX

C_{28}._3C_4^2
% in TeX

G:=Group("C28.3C4^2");
// GroupNames label

G:=SmallGroup(448,112);
// by ID

G=gap.SmallGroup(448,112);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,28,253,64,136,1684,851,102,18822]);
// Polycyclic

G:=Group<a,b,c|a^28=b^4=1,c^4=a^14,b*a*b^-1=a^-1,c*a*c^-1=a^15,c*b*c^-1=a^21*b>;
// generators/relations

׿
×
𝔽